
UNIT – IV CS403PC: OPERATING SYSTEMS

C. Dinesh, AP/CSE-AIML, MRCE Page 1

UNIT – IV MEMORY MANAGEMENT and VIRTUAL MEMORY

Main Memory

Main Memory is a large array of words or bytes, ranging in size from

hundreds of thousands to billions.

Main memory is a repository of rapidly available information shared by

the CPU and I/O devices.

Main memory is the place where programs and information are kept when the

processor is effectively utilizing them.

Main memory is associated with the processor, so moving instructions and

information into and out of the processor is extremely fast.

Main memory is also known as RAM (Random Access Memory). This

memory is volatile. RAM loses its data when a power interruption occurs.

Memory Management

In a multiprogramming computer, the Operating System resides in a part of

memory, and the rest is used by multiple processes.

The task of subdividing the memory among different processes is called

Memory Management.

Memory management is a method in the operating system to manage

operations between main memory and disk during process execution.

The main aim of memory management is to achieve efficient utilization of

memory.

Requirement of Memory Management

 Allocate and de-allocate memory before and after process execution.

 To keep track of used memory space by processes.

 To minimize fragmentation issues.

 To proper utilization of main memory.

 To maintain data integrity while executing of process.

UNIT – IV CS403PC: OPERATING SYSTEMS

C. Dinesh, AP/CSE-AIML, MRCE Page 2

Logical Address Space

An address generated by the CPU is known as a “Logical Address”. It is also

known as a Virtual address. Logical address space can be defined as the size of the

process. A logical address can be changed.

Physical Address Space

An address seen by the memory unit (i.e the one loaded into the memory

address register of the memory) is commonly known as a “Physical Address”.

A Physical address is also known as a Real address.

The set of all physical addresses corresponding to these logical addresses is

known as Physical address space.

A physical address is computed by MMU. The run-time mapping from virtual

to physical addresses is done by a hardware device Memory Management Unit

(MMU). The physical address always remains constant.

Static and Dynamic Loading

Loading a process into the main memory is done by a loader. There are two

different types of loading :

(i) Static Loading

Static Loading is basically loading the entire program into a fixed address. It

requires more memory space.

(ii) Dynamic Loading

The entire program and all data of a process must be in physical memory for

the process to execute. So, the size of a process is limited to the size of physical

memory. To gain proper memory utilization, dynamic loading is used.

In dynamic loading, a routine is not loaded until it is called. All routines are

residing on disk in a relocatable load format.

One of the advantages of dynamic loading is that the unused routine is never

loaded. This loading is useful when a large amount of code is needed to handle it

efficiently.

Static and Dynamic Linking

To perform a linking task a linker is used. A linker is a program that takes one or

more object files generated by a compiler and combines them into a single

executable file.

(i) Static Linking

In static linking, the linker combines all necessary program modules into a

single executable program. So there is no runtime dependency. Some operating

systems support only static linking, in which system language libraries are

treated like any other object module.

(ii) Dynamic Linking

The basic concept of dynamic linking is similar to dynamic loading.

In dynamic linking, “Stub” is included for each appropriate library routine

reference. A stub is a small piece of code. When the stub is executed, it checks

whether the needed routine is already in memory or not. If not available then the

program loads the routine into memory.

UNIT – IV CS403PC: OPERATING SYSTEMS

C. Dinesh, AP/CSE-AIML, MRCE Page 3

SWAPPING

When a process is executed it must have

resided in memory. Swapping is a process of

swapping a process temporarily into a

secondary memory from the main memory,

which is fast compared to secondary memory.

A swapping allows more processes to be run

and can be fit into memory at one time.

The main part of swapping is transferred

time and the total time is directly proportional

to the amount of memory swapped.

Swapping is also known as roll-out, or roll because if a higher priority process

arrives and wants service, the memory manager can swap out the lower priority

process and then load and execute the higher priority process. After finishing higher

priority work, the lower priority process swapped back in memory and continued to

the execution process.

Advantages

 If there is low main memory so some processes may has to wait for much

long but by using swapping process do not have to wait long for execution on

CPU.

 It utilize the main memory.

 Using only single main memory, multiple process can be run by CPU using

swap partition.

 The concept of virtual memory start from here and it utilize it in better way.

 This concept can be useful in priority based scheduling to optimize the

swapping process.

Disadvantages

 If there is low main memory resource and user is executing too many

processes and suddenly the power of system goes off there might be a

scenario where data get erase of the processes which are took parts in

swapping.

 Chances of number of page faults occur

 Low processing performance

Example:

Suppose the user process's size is 2048KB and is a standard hard disk where

swapping has a data transfer rate of 1Mbps. Calculate how long it will take to transfer

from main memory to secondary memory.

User process size is 2048Kb

Data transfer rate is 1Mbps = 1024 kbps

Time = process size / transfer rate

 = 2048 / 1024 = 2 seconds or 2000 milliseconds

Now taking swap-in and swap-out time, the process will take 4000 ms or 4 seconds.

UNIT – IV CS403PC: OPERATING SYSTEMS

C. Dinesh, AP/CSE-AIML, MRCE Page 4

Contiguous Memory Allocation

The main memory should accommodate both the operating system and the

different client processes. Therefore, the allocation of memory becomes an

important task in the operating system. The memory is usually divided into two

partitions: one for the resident operating system and one for the user processes.

We normally need several user processes to reside in memory simultaneously.

Therefore, we need to consider how to allocate available memory to the processes

that are in the input queue waiting to be brought into memory. In adjacent memory

allotment, each process is contained in a single contiguous segment of memory.

Memory Allocation

To gain proper memory utilization, memory allocation must be allocated efficient

manner. One of the simplest methods for allocating memory is to divide memory

into several fixed-sized partitions and each partition contains exactly one process.

Thus, the degree of multiprogramming is obtained by the number of partitions.

 Multiple partition allocation

A process is selected from the input queue and loaded into the free partition.

When the process terminates, the partition becomes available for other

processes.

 Fixed partition allocation

The operating system maintains a table that indicates which parts of memory

are available and which are occupied by processes.

Initially, all memory is available for user processes and is considered one

large block of available memory. This available memory is known as a “Hole”.

When the process arrives and needs memory, we search for a hole that is large

enough to store this process. If the requirement is fulfilled then we allocate

memory to process, otherwise keeping the rest available to satisfy future

requests.

While allocating a memory sometimes dynamic storage allocation problems

occur, which concerns how to satisfy a request of size n from a list of free holes.

There are some solutions to this problem:

UNIT – IV CS403PC: OPERATING SYSTEMS

C. Dinesh, AP/CSE-AIML, MRCE Page 5

First Fit

In the First Fit, the first

available free hole fulfil the

requirement of the process

allocated.

Here, in this diagram, a

40 KB memory block is the first

available free hole that can store

process A (size of 25 KB),

because the first two blocks did

not have sufficient memory

space.

Best Fit

In the Best Fit, allocate the

smallest hole that is big enough to

process requirements. For this, we

search the entire list, unless the list is

ordered by size.

Here in this example, first, we

traverse the complete list and find the

last hole 25KB is the best suitable

hole for Process A(size 25KB).

In this method, memory

utilization is maximum as compared

to other memory allocation

techniques.

Worst Fit

In the Worst Fit, allocate the

largest available hole to process. This

method produces the largest leftover

hole.

Here in this example, Process

A (Size 25 KB) is allocated to the

largest available memory block which

is 60KB.

Inefficient memory utilization

is a major issue in the worst fit.

UNIT – IV CS403PC: OPERATING SYSTEMS

C. Dinesh, AP/CSE-AIML, MRCE Page 6

FRAGMENTATION

Fragmentation is defined as when the process is loaded and removed after

execution from memory, it creates a small free hole. These holes can not be assigned

to new processes because holes are not combined or do not fulfill the memory

requirement of the process.

To achieve a degree of multiprogramming, we must reduce the waste of memory

or fragmentation problems. In the operating systems two types of fragmentation:

1. Internal fragmentation

Internal fragmentation occurs when memory blocks are allocated to the

process more than their requested size. Due to this some unused space is left over

and creating an internal fragmentation problem.

Example: Suppose there is a fixed partitioning used for memory allocation

and the different sizes of blocks 3MB, 6MB, and 7MB space in memory. Now a

new process p4 of size 2MB comes and demands a block of memory. It gets a

memory block of 3MB but 1MB block of memory is a waste, and it can not be

allocated to other processes too. This is called internal fragmentation.

2. External fragmentation

In External Fragmentation, we have a free memory block, but we can not

assign it to a process because blocks are not contiguous.

Example: Suppose (consider the above example) three processes p1, p2, and

p3 come with sizes 2MB, 4MB, and 7MB respectively. Now they get memory

blocks of size 3MB, 6MB, and 7MB allocated respectively. After allocating the

process p1 process and the p2 process left 1MB and 2MB. Suppose a new

process p4 comes and demands a 3MB block of memory, which is available, but

we can’t assign it because free memory space is not contiguous. This is called

external fragmentation.

Both the first-fit and best-fit systems for memory allocation are affected by

external fragmentation.

To overcome the external fragmentation problem Compaction is used. In the

compaction technique, all free memory space combines and makes one large block.

So, this space can be used by other processes effectively.

Another possible solution to the external fragmentation is to allow the logical

address space of the processes to be non-contiguous, thus permitting a process to be

allocated physical memory wherever the latter is available.

UNIT – IV CS403PC: OPERATING SYSTEMS

C. Dinesh, AP/CSE-AIML, MRCE Page 7

PAGING

Paging is a memory management scheme that eliminates the need for a

contiguous allocation of physical memory. This scheme permits the physical address

space of a process to be non-contiguous.

The mapping from virtual to physical address is done by the memory

management unit (MMU) which is a hardware device and this mapping is known as

the paging technique.

 The Physical Address Space is conceptually divided into several fixed-size

blocks, called frames.

 The Logical Address Space is also split into fixed-size blocks, called pages.

 Page Size = Frame Size

The address generated by the CPU is divided into:

 Page Number(p)

Number of bits required to represent the pages in Logical Address

Space or Page number

 Page Offset(d)

Number of bits required to represent a particular word in a page or

page size of Logical Address Space or word number of a page or page offset.

Physical Address is divided into:

 Frame Number(f)

Number of bits required to represent the frame of Physical Address

Space or Frame number frame

 Frame Offset(d)

Number of bits required to represent a particular word in a frame or

frame size of Physical Address Space or word number of a frame or frame

offset.

UNIT – IV CS403PC: OPERATING SYSTEMS

C. Dinesh, AP/CSE-AIML, MRCE Page 8

PAGING HARDWARE WITH TLB

The hardware implementation of the page table can be done by using dedicated

registers. But the usage of the register for the page table is satisfactory only if the

page table is small.

If the page table contains a large number of entries then we can use TLB

(translation Look-aside buffer), a special, small, fast look-up hardware cache.

 The TLB is an associative, high-speed memory.

 Each entry in TLB consists of two parts: a tag and a value.

 When this memory is used, then an item is compared with all tags

simultaneously. If the item is found, then the corresponding value is returned.

When a logical address is generated by the CPU, its page number is presented

to the TLB. If the page number is found, its frame number is immediately available

and is used to access memory.

If the page number is not in the TLB (known as a TLB miss), a memory

reference to the page table must be made. When the frame number is obtained, we can

use it to access memory. In addition, we add the page number and frame number to

the TLB, so that they will be found quickly on the next reference. If the TLB is

already full of entries, the operating system must select one for replacement.

Replacement policies range from least recently used (LRU) to random. Furthermore,

some TLBs allow entries to be wired down, meaning that they cannot be removed

from the TLB. Typically, TLB entries for kernel code are often wired down.

The percentage of times that a particular page number is found in the TLB is

called the hit ratio. An 80-percent hit ratio means that we find the desired page

number in the TLB 80 percent of the time. If it takes 20 nanoseconds to search the

TLB, and 100 nanoseconds to access memory, then a mapped memory access takes

120 nanoseconds when the page number is in the TLB. If we fail to find the page

UNIT – IV CS403PC: OPERATING SYSTEMS

C. Dinesh, AP/CSE-AIML, MRCE Page 9

number in the TLB (20 nanoseconds), then we must first access memory for the page

table and frame number (100 nanoseconds), and then access the desired byte in

memory (100 nanoseconds), for a total of 220 nanoseconds.

To find the effective memory-access time, we must weigh each case by its

probability: (Where P is Hit ratio)

EAT(effective access time) = P x hit memory time + (1-P) x miss memory time.

 = 0.80 x 120 + 0.20 x 220

 = 140 nanoseconds.

In this example, we suffer a 40-percent slowdown in memory access time

(from 100 to 140 ns).

For a 98-percent hit ratio, we have

EAT(effective access time)= P x hit memory time + (1-P) x miss memory time.

 = 0.98 x 120 + 0.02 x 220

 = 122 nanoseconds.

This increased hit rate produces only a 22-percent slowdown in access time.

Example:

What will be the EAT if hit ratio is 70%, time for TLB is 30ns and access to

main memory is 90ns?

P = 70% = 70/100 = 0.7

Hit memory time = 30ns + 90ns = 120ns

Miss memory time = 30ns + 90ns + 90ns = 210ns

Therefore,

EAT = P x Hit + (1-P) x Miss

 = 0.7 x 120 + 0.3 x 210

 =840 + 63.0

 =147 ns

UNIT – IV CS403PC: OPERATING SYSTEMS

C. Dinesh, AP/CSE-AIML, MRCE Page 10

SEGMENTATION

A process is divided into Segments. The chunks that a program is divided into

which are not necessarily all of the exact sizes are called segments. Segmentation

gives the user’s view of the process which paging does not provide.

Here the user’s view is mapped to physical memory. There is no simple

relationship between logical addresses and physical addresses in segmentation.

A table stores the information about all such segments and is called Segment

Table. It maps a two-dimensional Logical address into a one-dimensional Physical

address. It’s each table entry has:

Base Address:

It contains the starting physical address where the segments reside in

memory.

Segment Limit:

Also known as segment offset. It specifies the length of the segment.

 The address generated by the CPU is divided into:

Segment number (s):

Number of bits required to represent the segment.

Segment offset (d):

Number of bits required to represent the size of the segment.

The Segment number is mapped to the segment table. The limit of the

respective segment is compared with the offset. If the offset is less than the limit then

the address is valid otherwise it throws an error as the address is invalid. In the case of

valid addresses, the base address of the segment is added to the offset to get the

physical address of the actual word in the main memory.

UNIT – IV CS403PC: OPERATING SYSTEMS

C. Dinesh, AP/CSE-AIML, MRCE Page 11

Example of Segmentation

Let us assume we have five segments namely: Segment-0, Segment-1,

Segment-2, Segment-3, and Segment-4. Initially, before the execution of the process,

all the segments of the process are stored in the physical memory space. We have a

segment table as well. The segment table contains the beginning entry address of each

segment (denoted by base). The segment table also contains the length of each of the

segments (denoted by limit).

As shown in the image below, the base address of Segment-0 is 1400 and its

length is 1000, the base address of Segment-1 is 6300 and its length is 400, the base

address of Segment-2 is 4300 and its length is 400, and so on.

The pictorial representation of the above segmentation with its segment table is

shown below.

UNIT – IV CS403PC: OPERATING SYSTEMS

C. Dinesh, AP/CSE-AIML, MRCE Page 12

SEGMENTATION WITH PAGING

Pure segmentation is not very popular and not being used in many of the

operating systems. However, Segmentation can be combined with Paging to get the

best features out of both the techniques.

In Segmented Paging, the main memory is divided into variable size segments

which are further divided into fixed size pages.

 Pages are smaller than segments.

 Each Segment has a page table which means every program has multiple page

tables.

 The logical address is represented as Segment Number (base address), Page

number and page offset.

Segment Number → It points to the appropriate Segment Number.

Page Number → It Points to the exact page within the segment

Page Offset → Used as an offset within the page frame

Each Page Table contains, the various information about every page of the

segment. The Segment Table contains the information about every segment. Each

segment table entry points to a page table entry and every page table entry is mapped

to one of the page within a segment.

UNIT – IV CS403PC: OPERATING SYSTEMS

C. Dinesh, AP/CSE-AIML, MRCE Page 13

Translation of logical address to physical address

The CPU generates a logical address which is divided into two parts: Segment

Number and Segment Offset. The Segment Offset must be less than the segment limit.

Offset is further divided into Page number and Page Offset. To map the exact page

number in the page table, the page number is added into the page table base.

The actual frame number with the page offset is mapped to the main memory to

get the desired word in the page of the certain segment of the process.

Advantages of Segmented Paging

 It reduces memory usage.

 Page table size is limited by the segment size.

 Segment table has only one entry corresponding to one actual segment.

 External Fragmentation is not there.

 It simplifies memory allocation.

Disadvantages of Segmented Paging

 Internal Fragmentation will be there.

 The complexity level will be much higher as compare to paging.

 Page Tables need to be contiguously stored in the memory.

UNIT – IV CS403PC: OPERATING SYSTEMS

C. Dinesh, AP/CSE-AIML, MRCE Page 14

DEMAND PAGING

Demand paging can be described as a memory management technique that is

used in operating systems to improve memory usage and system performance.

Demand paging is a technique used in virtual memory systems where pages enter

main memory only when requested or needed by the CPU.

In demand paging, the operating system loads only the necessary pages of a

program into memory at runtime, instead of loading the entire program into memory

at the start.

A page fault occurred when the program needed to access a page that is not

currently in memory. The operating system then loads the required pages from the

disk into memory and updates the page tables accordingly. This process is

transparent to the running program and it continues to run as if the page had always

been in memory.

A demand paging mechanism is very much similar to a paging system with

swapping where processes stored in the secondary memory and pages are loaded only

on demand, not in advance.

So, when a context switch occurs, the OS never copy any of the old program’s

pages from the disk or any of the new program’s pages into the main memory.

Instead, it will start executing the new program after loading the first page and fetches

the program’s pages, which are referenced.

During the program execution, if the program references a page that may not be

available in the main memory because it was swapped, then the processor considers it

as an invalid memory reference. That’s because the page fault and transfers send

control back from the program to the OS, which demands to store page back into the

memory.

UNIT – IV CS403PC: OPERATING SYSTEMS

C. Dinesh, AP/CSE-AIML, MRCE Page 15

VIRTUAL MEMORY

Virtual Memory is a storage allocation scheme in which secondary

memory can be addressed as though it were part of the main memory. The addresses a

program may use to reference memory are distinguished from the addresses the

memory system uses to identify physical storage sites and program-generated

addresses are translated automatically to the corresponding machine addresses.

The size of virtual storage is limited by the addressing scheme of the computer

system and the amount of secondary memory available not by the actual number of

main storage locations.

It is a technique that is implemented using both hardware and software. It maps

memory addresses used by a program, called virtual addresses, into physical addresses

in computer memory.

All memory references within a process are logical addresses that are

dynamically translated into physical addresses at run time. This means that a process

can be swapped in and out of the main memory such that it occupies different places

in the main memory at different times during the course of execution.

A process may be broken into a number of pieces and these pieces need not be

continuously located in the main memory during execution. The combination of

dynamic run-time address translation and the use of a page or segment table permits

this.

If these characteristics are present then, it is not necessary that all the pages or

segments are present in the main memory during execution. This means that the

required pages need to be loaded into memory whenever required. Virtual memory is

implemented using Demand Paging or Demand Segmentation.

PURE DEMAND PAGING

Pure demand paging is a specific implementation of demand paging.

The operating system only loads pages into memory when the program needs them.

In on-demand paging only, no pages are initially loaded into memory when the

program starts, and all pages are initially marked as being on disk.

Benefits of the Demand Paging

So in the Demand Paging technique, there are some benefits that provide

efficiency of the operating system.

 Efficient use of physical memory: Query paging allows for more efficient

use because only the necessary pages are loaded into memory at any given

time.

 Support for larger programs: Programs can be larger than the physical

memory available on the system because only the necessary pages will be

loaded into memory.

https://www.geeksforgeeks.org/computer-memory/

UNIT – IV CS403PC: OPERATING SYSTEMS

C. Dinesh, AP/CSE-AIML, MRCE Page 16

 Faster program start: Because only part of a program is initially loaded into

memory, programs can start faster than if the entire program were loaded at

once.

 Reduce memory usage: Query paging can help reduce the amount of

memory a program needs, which can improve system performance by

reducing the amount of disk I/O required.

Drawbacks of the Demand Paging

 Page Fault Overload: The process of swapping pages between memory and

disk can cause a performance overhead, especially if the program frequently

accesses pages that are not currently in memory.

 Degraded performance: If a program frequently accesses pages that are not

currently in memory, the system spends a lot of time swapping out pages,

which degrades performance.

 Fragmentation: Query paging can cause physical memory fragmentation,

degrading system performance over time.

 Complexity: Implementing query paging in an operating system can be

complex, requiring complex algorithms and data structures to manage page

tables and swap space.

Working Process of Demand Paging

Suppose we want to run a process P which has four pages P0, P1, P2, and P3.

Currently, in the page table, we have pages P1 and P3. So there are some steps that

are followed in the working process of the demand paging in the operating system.

A Page Fault happens when you access a page that has been marked as invalid.

The paging hardware would notice that the invalid bit is set while translating the

UNIT – IV CS403PC: OPERATING SYSTEMS

C. Dinesh, AP/CSE-AIML, MRCE Page 17

address across the page table, which will cause an operating system trap. The trap is

caused primarily by the OS's failure to load the needed page into memory.

Procedure of page fault handling

1. Firstly, an internal table for this process to assess whether the reference was

valid or invalid memory access.

2. If the reference becomes invalid, the system process would be terminated.

Otherwise, the page will be paged in.

3. After that, the free-frame list finds the free frame in the system.

4. Now, the disk operation would be scheduled to get the required page from the

disk.

5. When the I/O operation is completed, the process's page table will be updated

with a new frame number, and the invalid bit will be changed. Now, it is a

valid page reference.

6. If any page fault is found, restart these steps from starting.

Page Hit
When the CPU attempts to obtain a needed page from main memory and the

page exists in main memory (RAM), it is referred to as a "Page Hit".

Page Miss
If the needed page has not existed in the main memory (RAM), it is known

as "Page Miss" or “Page Fault”.

Page Fault Time
The time it takes to get a page from secondary memory and recover it from the

main memory after loading the required page is known as "Page Fault Time".

UNIT – IV CS403PC: OPERATING SYSTEMS

C. Dinesh, AP/CSE-AIML, MRCE Page 18

BASIC PAGE REPLACEMENT ALGORITHM

Page Replacement technique uses the following approach. If there is no free frame,

then we will find the one that is not currently being used and then free it. A-frame can

be freed by writing its content to swap space and then change the page table in order

to indicate that the page is no longer in the memory.

1. First of all, find the location of the desired page on the disk.

2. Find a free Frame:

a) If there is a free frame, then use it.

b) If there is no free frame then make use of the page-replacement algorithm in

order to select the victim frame.

c) Then after that write the victim frame to the disk and then make the changes

in the page table and frame table accordingly.

3. After that read the desired page into the newly freed frame and then change the

page and frame tables.

4. Restart the process.

PAGE REPLACEMENT ALGORITHM

In an operating system that uses paging for memory management, a page

replacement algorithm is needed to decide which page needs to be replaced when a

new page comes in.

A page fault happens when a running program accesses a memory page that is

mapped into the virtual address space but not loaded in physical memory. Since

actual physical memory is much smaller than virtual memory, page faults happen.

In case of a page fault, Operating System might have to replace one of the

existing pages with the newly needed page. Different page replacement algorithms

suggest different ways to decide which page to replace.

The target for all algorithms is to reduce the number of page faults.

UNIT – IV CS403PC: OPERATING SYSTEMS

C. Dinesh, AP/CSE-AIML, MRCE Page 19

(i) First-In-First-Out (FIFO) Page Replacement Algorithm:

This is the simplest page replacement algorithm. In this algorithm, the

operating system keeps track of all pages in the memory in a queue, the oldest

page is in the front of the queue. When a page needs to be replaced page in the

front of the queue is selected for removal.

Example 1:

Consider page reference string 1, 3, 0, 3, 5, 6, 3 with 3 page frames. Find the

number of page faults.

Initially, all slots are empty, so when 1, 3, 0 came they are allocated to the

empty slots —> 3 Page Faults. When 3 comes, it is already in memory so No

Page Faults. Then 5 comes, it is not available in memory so it replaces the oldest

page slot i.e 1. When 6 comes, it is also not available in memory so it replaces

the oldest page slot i.e 3 and its cause Page Fault. Finally, when 3 come it is not

available so it replaces 0 ie page fault.

(ii) Optimal Page replacement:

In this algorithm, pages are replaced which would not be used for the longest

duration of time in the future.

Example:

Consider the page references 7, 0, 1, 2, 0, 3, 0, 4, 2, 3, 0, 3, 2, 3 with 4 page

frame.

UNIT – IV CS403PC: OPERATING SYSTEMS

C. Dinesh, AP/CSE-AIML, MRCE Page 20

Initially, all slots are empty, so when 7 0 1 2 are allocated to the empty slots

ie 4 Page faults. 0 is already there, so No Page fault, when 0 came. When 3

came it will take the place of 7 because it is not used for the longest duration of

time in the future and its cause Page fault. 0 is already there, so No Page fault. 4

will takes place of 1 and its cause Page Fault. Now for the further page reference

string, No Page Fault because they are already available in the memory.

Optimal page replacement is perfect, but not possible in practice as the

operating system cannot know future requests. The use of Optimal Page

replacement is to set up a benchmark so that other replacement algorithms can be

analyzed against it.

(iii) Least Recently Used:

In this algorithm, page will be replaced which is least recently used.

Example:

Consider the page reference string 7, 0, 1, 2, 0, 3, 0, 4, 2, 3, 0, 3, 2, 3 with 4

page frames.

Initially, all slots are empty, so when 7 0 1 2 are allocated to the empty slots, 4

Page faults. 0 is already there, so No Page fault. When 3 came it will take the place

of 7 because it is least recently used and its cause Page fault. 0 is already in

memory, so No Page fault. 4 will takes place of 1 and its cause Page Fault. Now

for the further page reference string No Page fault because they are already

available in the memory.

UNIT – IV CS403PC: OPERATING SYSTEMS

C. Dinesh, AP/CSE-AIML, MRCE Page 21

Belady’s Anomaly

Generally, on increasing the number of frames to a process virtual memory,

its execution becomes faster as fewer page faults occur. Sometimes the reverse

happens, i.e. more page faults occur when more frames are allocated to a process.

This most unexpected result is termed Belady’s Anomaly.

Belady’s Anomaly is the name given to the phenomenon where increasing

the number of page frames results in an increase in the number of page faults for a

given memory access pattern.

Question 1:

Consider the following page reference string:

1, 2, 3, 4, 2, 1, 5, 6, 2, 1, 2, 3, 7, 6, 3, 2, 1, 2, 3, 6

Calculate the number of page faults related to LRU, FIFO and optimal page

replacement algorithms. Assume 5 page frames and all frames are initially empty.

In LRU:

No. of Page fault = 8

In FIFO:

 No. of Page fault = 10

UNIT – IV CS403PC: OPERATING SYSTEMS

C. Dinesh, AP/CSE-AIML, MRCE Page 22

In Optimal:

 No. of Page fault = 7

Page Replacement Algorithm No. of Page Fault

FIFO 10

LRU 8

Optimal 7

UNIT – IV CS403PC: OPERATING SYSTEMS

C. Dinesh, AP/CSE-AIML, MRCE Page 23

